Create a sink connector from Apache Kafka® to Google BigQuery ============================================================= The `Google BigQuery sink connector `_ enables you to move data from an Aiven for Apache Kafka® cluster to a set of Google BigQuery tables for further processing and analysis. .. note:: You can check the full set of available parameters and configuration options in the `connector's documentation `_. .. _connect_bigquery_sink_prereq: Prerequisites ------------- To setup an Google BigQuery sink connector, you need an Aiven for Apache Kafka service :doc:`with Kafka Connect enabled ` or a :ref:`dedicated Aiven for Apache Kafka Connect cluster `. Furthermore you need to follow the steps :doc:`to prepare the GCP account ` and collect the following information about the target BigQuery upfront: * ``GCP_PROJECT_NAME``: The GCP project name where the target Google BigQuery is located * ``GCP_SERVICE_KEY``: A valid GCP service account key for the ``GCP_PROJECT_NAME``. To create the project key review the :ref:`dedicated document ` .. Warning:: The GCP BigQuery sink connector accepts the ``GCP_SERVICE_KEY`` JSON service key as a string, therefore all ``"`` symbols within it must be escaped ``\"``. The ``GCP_SERVICE_KEY`` parameter should be in the format ``{\"type\": \"service_account\",\"project_id\": \"XXXXXX\", ...}`` Additionally, any ``\n`` symbols contained in the ``private_key`` field need to be escaped (by substituting with ``\\n``) * ``BIGQUERY_DATASET_NAME``: The BigQuery dataset name, as defined in the :ref:`dedicated pre-requisite step ` * ``TOPIC_LIST``: The list of topics to sink divided by comma * ``APACHE_KAFKA_HOST``: The hostname of the Apache Kafka service, only needed when using Avro as data format * ``SCHEMA_REGISTRY_PORT``: The Apache Kafka's schema registry port, only needed when using Avro as data format * ``SCHEMA_REGISTRY_USER``: The Apache Kafka's schema registry username, only needed when using Avro as data format * ``SCHEMA_REGISTRY_PASSWORD``: The Apache Kafka's schema registry user password, only needed when using Avro as data format .. Note:: The ``SCHEMA_REGISTRY`` related parameters are available in the Aiven for Apache Kafka® service page, *Overview* tab, and *Schema Registry* subtab As of version 3.0, Aiven for Apache Kafka no longer supports Confluent Schema Registry. For more information, read `the article describing the replacement, Karapace `_ Setup a Google BigQuery sink connector with Aiven Console --------------------------------------------------------- The following example demonstrates how to setup a Google BigQuery sink connector for Apache Kafka using the `Aiven Console `_. Define a Kafka Connect configuration file ''''''''''''''''''''''''''''''''''''''''' Define the connector configurations in a file (we'll refer to it with the name ``bigquery_sink.json``) with the following content: .. code-block:: json { "name":"CONNECTOR_NAME", "connector.class": "com.wepay.kafka.connect.bigquery.BigQuerySinkConnector", "topics": "TOPIC_LIST", "project": "GCP_PROJECT_NAME", "defaultDataset": ".*=BIGQUERY_DATASET_NAME", "schemaRetriever": "com.wepay.kafka.connect.bigquery.retrieve.IdentitySchemaRetriever", "schemaRegistryClient.basic.auth.credentials.source": "URL", "schemaRegistryLocation":"https://SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD@APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "key.converter": "io.confluent.connect.avro.AvroConverter", "key.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "key.converter.basic.auth.credentials.source": "USER_INFO", "key.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD", "value.converter": "io.confluent.connect.avro.AvroConverter", "value.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "value.converter.basic.auth.credentials.source": "USER_INFO", "value.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD", "autoCreateTables": "true", "keySource": "JSON", "keyfile": "GCP_SERVICE_KEY" } The configuration file contains the following entries: * ``name``: the connector name * ``project``: the GCP project name where the target Google BigQuery is located. * ``defaultDataset``: the target BigQuery dataset name, prefixed with ``.*=``. * ``schemaRegistryLocation``: details of the connection to Karapace offering the schema registry functionality, only needed when the source data is in Avro format. * ``key.converter`` and ``value.converter``: define the message data format in the Apache Kafka topic. The ``io.confluent.connect.avro.AvroConverter`` converter translates messages from the Avro format. To retrieve the message schema we use Aiven's `Karapace schema registry `_, as specified by the ``schema.registry.url`` parameter and related credentials. .. note:: The ``key.converter`` and ``value.converter`` sections are only needed when the source data is in Avro format. If omitted the messages will be read as binary format. When using Avro as source data format, you need to set following parameters * ``value.converter.schema.registry.url``: pointing to the Aiven for Apache Kafka schema registry URL in the form of ``https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT`` with the ``APACHE_KAFKA_HOST`` and ``SCHEMA_REGISTRY_PORT`` parameters :ref:`retrieved in the previous step `. * ``value.converter.basic.auth.credentials.source``: to the value ``USER_INFO``, since you're going to login to the schema registry using username and password. * ``value.converter.schema.registry.basic.auth.user.info``: passing the required schema registry credentials in the form of ``SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD`` with the ``SCHEMA_REGISTRY_USER`` and ``SCHEMA_REGISTRY_PASSWORD`` parameters :ref:`retrieved in the previous step `. * ``autoCreateTables``: enables the auto creation of the target BigQuery tables if they do not yet exist. * ``allBQFieldsNullable``: sets any created column of produced BigQuery schema as NULLABLE instead of REQUIRED (even from Avro fields defined as non-nullable). .. note:: Additional configuration parameters enable the BigQuery sink connector to automatically evolve tables in response to new incoming messages from the source topic. Specifically, these parameters provide the following functionalities: : * ``allowNewBigQueryFields``: new fields can be added to BigQuery tables during subsequent schema updates. * ``allowBigQueryRequiredFieldRelaxation``: fields in BigQuery schema can be changed back from REQUIRED to NULLABLE. .. warning:: When the connector automatically performs subsequent schema changes on tables, columns, and data type definitions, it reduces the control database users have over these changes. This could lead to unexpected errors, particularly if message evolution exceeds the compatibility limits of BigQuery and its associated applications. * ``keySource``: defines the format of the GCP key, the value should be ``JSON`` if the key is generated in JSON format * ``keyfile``: contains the GCP service account key, correctly escaped as defined in the :ref:`prerequisite phase ` .. warning:: The configuration of the BigQuery connector in Aiven has a non-backward-compatible change between versions ``1.2.0`` and ``1.6.5``: * version ``1.2.0`` uses the ``credentials`` field to specify the Google Cloud credentials in JSON format: .. code:: ... "credentials": "{...}", ... * from version ``1.6.5`` on, use the ``keyfield`` field and set the ``keySource`` parameter to ``JSON``: .. code:: ... "keyfile": "{...}", "keySource": "JSON", ... You can review the connector version available in an Aiven for Apache Kafka service with the :ref:`dedicated Aiven CLI command ` ``avn service connector available``. The full list of parameters is available in the `dedicated GitHub page `_. Create a Kafka Connect connector with the Aiven Console ''''''''''''''''''''''''''''''''''''''''''''''''''''''' To create a Kafka Connect connector, follow these steps: 1. Log in to the `Aiven Console `_ and select the Aiven for Apache Kafka® or Aiven for Apache Kafka Connect® service where the connector needs to be defined. 2. Select **Connectors** from the left sidebar. 3. Select **Create New Connector**, the button is enabled only for services :doc:`with Kafka Connect enabled `. 4. Select **Google BigQuery Sink**. 5. In the **Common** tab, locate the **Connector configuration** text box and select on **Edit**. 6. Paste the connector configuration (stored in the ``bigquery_sink.json`` file) in the form. 7. Select **Apply**. .. note:: The Aiven Console parses the configuration file and fills the relevant UI fields. You can review the UI fields across the various tabs and change them if necessary. The changes will be reflected in JSON format in the **Connector configuration** text box. 8. After all the settings are correctly configured, select **Create connector**. 9. Verify the connector status under the **Connectors** screen. 10. Verify the presence of the data in the target BigQuery dataset, the table name is equal to the Apache Kafka topic name. If you need to change the target table name, you can do so using the Kafka Connect ``RegexRouter`` transformation. .. note:: You can also create connectors using the :doc:`Aiven CLI command `. Example: Create a Google BigQuery sink connector on a topic with a JSON schema ------------------------------------------------------------------------------ You have a topic named ``iot_measurements`` containing data in JSON format, with a defined JSON schema: .. code-block:: json { "schema": { "type":"struct", "fields":[{ "type":"int64", "optional": false, "field": "iot_id" },{ "type":"string", "optional": false, "field": "metric" },{ "type":"int32", "optional": false, "field": "measurement" }] }, "payload":{ "iot_id":1, "metric":"Temperature", "measurement":14} } { "schema": { "type":"struct", "fields":[{ "type":"int64", "optional": false, "field": "iot_id" },{ "type":"string", "optional": false, "field": "metric" },{ "type":"int32", "optional": false, "field": "measurement" }] }, "payload":{"iot_id":2, "metric":"Humidity", "measurement":60} } .. Note:: Since the JSON schema needs to be defined in every message, there is a big overhead to transmit the information. To achieve a better performance in term of information-message ratio you should use the Avro format together with the `Karapace schema registry `__ provided by Aiven You can sink the ``iot_measurements`` topic to BigQuery with the following connector configuration, after replacing the placeholders for ``GCP_PROJECT_NAME``, ``GCP_SERVICE_KEY`` and ``BIGQUERY_DATASET_NAME``: .. code-block:: json { "name":"iot_sink", "connector.class": "com.wepay.kafka.connect.bigquery.BigQuerySinkConnector", "topics": "iot_measurements", "project": "GCP_PROJECT_NAME", "defaultDataset": ".*=BIGQUERY_DATASET_NAME", "value.converter": "org.apache.kafka.connect.json.JsonConverter", "autoCreateTables": "true", "keySource": "JSON", "keyfile": "GCP_SERVICE_KEY" } The configuration file contains the following things to note: * ``"topics": "iot_measurements"``: defines the topic to sink * ``"value.converter": "org.apache.kafka.connect.json.JsonConverter"``: the message value is in plain JSON format without a schema Example: Create a Google BigQuery sink connector on a topic in Avro format -------------------------------------------------------------------------- You have a topic named ``students`` in Avro format with the schema stored in Karapace. You can sink the ``students`` topic to BigQuery with the following connector configuration, after replacing the placeholders for ``GCP_PROJECT_NAME``, ``GCP_SERVICE_KEY``, ``BIGQUERY_DATASET_NAME``, ``SCHEMA_REGISTRY_USER``, ``SCHEMA_REGISTRY_PASSWORD``, ``APACHE_KAFKA_HOST``, ``SCHEMA_REGISTRY_PORT``: .. code-block:: json { "name":"students_sink", "connector.class": "com.wepay.kafka.connect.bigquery.BigQuerySinkConnector", "topics": "students", "project": "GCP_PROJECT_NAME", "defaultDataset": ".*=BIGQUERY_DATASET_NAME", "schemaRetriever": "com.wepay.kafka.connect.bigquery.retrieve.IdentitySchemaRetriever", "schemaRegistryClient.basic.auth.credentials.source": "URL", "schemaRegistryLocation":"https://SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD@APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "key.converter": "io.confluent.connect.avro.AvroConverter", "key.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "key.converter.basic.auth.credentials.source": "USER_INFO", "key.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD", "value.converter": "io.confluent.connect.avro.AvroConverter", "value.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT", "value.converter.basic.auth.credentials.source": "USER_INFO", "value.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD", "autoCreateTables": "true", "keySource": "JSON", "keyfile": "GCP_SERVICE_KEY" } The configuration file contains the following things to note: * ``"topics": "students"``: setting the topic to sink * ``key.converter`` and ``value.converter``: define the message data format in the Apache Kafka topic. The ``io.confluent.connect.avro.AvroConverter`` converter translates messages from the Avro format. To retrieve the message schema we use Aiven's `Karapace schema registry `_ as specified by the ``schema.registry.url`` parameter and related credentials.