Create a sink connector from Apache Kafka® to Elasticsearch#
The Elasticsearch sink connector enables you to move data from an Aiven for Apache Kafka® cluster to an Elasticsearch instance for further processing and analysis.
Warning
This article describes how to create a sink connector to Elasticsearch. Similar instructions are available also for OpenSearch® in the dedicated article.
Note
You can check the full set of available parameters and configuration options in the connector’s documentation.
Prerequisites#
To setup an Elasticsearch sink connector, you need an Aiven for Apache Kafka service with Kafka Connect enabled or a dedicated Aiven for Apache Kafka Connect cluster.
Furthermore you need to collect the following information about the target Elasticsearch service upfront:
ES_CONNECTION_URL
: The Elasticsearch connection URL, in the form ofhttps://HOST:PORT
ES_USERNAME
: The Elasticsearch username to connectES_PASSWORD
: The password for the username selectedTOPIC_LIST
: The list of topics to sink divided by commaAPACHE_KAFKA_HOST
: The hostname of the Apache Kafka service, only needed when using Avro as data formatSCHEMA_REGISTRY_PORT
: The Apache Kafka’s schema registry port, only needed when using Avro as data formatSCHEMA_REGISTRY_USER
: The Apache Kafka’s schema registry username, only needed when using Avro as data formatSCHEMA_REGISTRY_PASSWORD
: The Apache Kafka’s schema registry user password, only needed when using Avro as data format
Note
If you’re using Aiven for Elasticsearch and Aiven for Apache Kafka® the above details are available in the Aiven console service Overview tab or via the dedicated avn service get
command with the Aiven CLI.
The SCHEMA_REGISTRY
related parameters are available in the Aiven for Apache Kafka® service page, Overview tab, and Schema Registry subtab
As of version 3.0, Aiven for Apache Kafka no longer supports Confluent Schema Registry. For more information, read the article describing the replacement, Karapace
Setup an Elasticsearch sink connector with Aiven Console#
The following example demonstrates how to setup a Elasticsearch sink connector for Apache Kafka using the Aiven Console.
Define a Kafka Connect configuration file#
Define the connector configurations in a file (we’ll refer to it with the name elasticsearch_sink.json
) with the following content:
{
"name":"CONNECTOR_NAME",
"connector.class": "io.aiven.connect.elasticsearch.ElasticsearchSinkConnector",
"topics": "TOPIC_LIST",
"connection.url": "ES_CONNECTION_URL",
"connection.username": "ES_USERNAME",
"connection.password": "ES_PASSWORD",
"type.name": "TYPE_NAME",
"tasks.max":"1",
"key.ignore": "true",
"key.converter": "io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"key.converter.basic.auth.credentials.source": "USER_INFO",
"key.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"value.converter.basic.auth.credentials.source": "USER_INFO",
"value.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD"
}
The configuration file contains the following entries:
name
: the connector nameconnection.url
,connection.username
,connection.password
: sink Elasticsearch parameters collected in the prerequisite phase.type.name
: the Elasticsearch type name to be used when indexing.key.ignore
: boolean flag dictating if to ignore the message key. If set to true, the document ID is generated as message’stopic+partition+offset
, the message key is used as ID otherwise.tasks.max
: maximum number of tasks to execute in parallel. By default this is 1.key.converter
andvalue.converter
: defines the messages data format in the Apache Kafka topic. Theio.confluent.connect.avro.AvroConverter
converter translates messages from the Avro format. To retrieve the messages schema we use Aiven’s Karapace schema registry as specified by theschema.registry.url
parameter and related credentials.
Note
The key.converter
and value.converter
sections are only needed when the source data is in Avro format. If omitted the messages will be read as binary format.
When using Avro as source data format, you need to set following parameters
value.converter.schema.registry.url
: pointing to the Aiven for Apache Kafka schema registry URL in the form ofhttps://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT
with theAPACHE_KAFKA_HOST
andSCHEMA_REGISTRY_PORT
parameters retrieved in the previous step.value.converter.basic.auth.credentials.source
: to the valueUSER_INFO
, since you’re going to login to the schema registry using username and password.value.converter.schema.registry.basic.auth.user.info
: passing the required schema registry credentials in the form ofSCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD
with theSCHEMA_REGISTRY_USER
andSCHEMA_REGISTRY_PASSWORD
parameters retrieved in the previous step.
Create a Kafka Connect connector with Aiven Console#
To create a Kafka Connect connector, follow these steps:
Log in to the Aiven Console and select the Aiven for Apache Kafka® or Aiven for Apache Kafka Connect® service where the connector needs to be defined.
Select Connectors from the left sidebar.
Select Create New Connector, the button is enabled only for services with Kafka Connect enabled.
Select Elasticsearch sink.
In the Common tab, locate the Connector configuration text box and select on Edit.
Paste the connector configuration (stored in the
elasticsearch_sink.json
file) in the form.Select Apply.
Note
The Aiven Console parses the configuration file and fills the relevant UI fields. You can review the UI fields across the various tab and change them if necessary. The changes will be reflected in JSON format in the Connector configuration text box.
After all the settings are correctly configured, select Create connector.
Verify the connector status under the Connectors screen.
Verify the presence of the data in the target Elasticsearch service, the index name is equal to the Apache Kafka topic name.
Note
You can also create connectors using the Aiven CLI command.
Create daily Elasticsearch indices#
You might need to create a new Elasticsearch index on daily basis to store the Apache Kafka messages.
Adding the following TimestampRouter
transformation in the connector properties file provides a way to define the index name as concatenation of the topic name and message date.
"transforms": "TimestampRouter",
"transforms.TimestampRouter.topic.format": "${topic}-${timestamp}",
"transforms.TimestampRouter.timestamp.format": "yyyy-MM-dd",
"transforms.TimestampRouter.type": "org.apache.kafka.connect.transforms.TimestampRouter"
Warning
The current version of the Elasticsearch sink connector is not able to automatically create daily indices in Elasticsearch. Therefore you need to create the indices with the correct name before starting the sink connector. You can create Elasticsearch indices in many ways including CURL commands.
Example: Create an Elasticsearch sink connector on a topic with a JSON schema#
If you have a topic named iot_measurements
containing the following data in JSON format, with a defined JSON schema:
{
"schema": {
"type":"struct",
"fields":[{
"type":"int64",
"optional": false,
"field": "iot_id"
},{
"type":"string",
"optional": false,
"field": "metric"
},{
"type":"int32",
"optional": false,
"field": "measurement"
}]
},
"payload":{ "iot_id":1, "metric":"Temperature", "measurement":14}
}
{
"schema": {
"type":"struct",
"fields":[{
"type":"int64",
"optional": false,
"field": "iot_id"
},{
"type":"string",
"optional": false,
"field": "metric"
},{
"type":"int32",
"optional": false,
"field": "measurement"
}]
},
"payload":{"iot_id":2, "metric":"Humidity", "measurement":60}}
}
Note
Since the JSON schema needs to be defined in every message, there is a big overhead to transmit the information. To achieve a better performance in term of information-message ratio you should use the Avro format together with the Karapace schema registry provided by Aiven
You can sink the iot_measurements
topic to Elasticsearch with the following connector configuration, after replacing the placeholders for ES_CONNECTION_URL
, ES_USERNAME
and ES_PASSWORD
:
{
"name":"sink_iot_json_schema",
"connector.class": "io.aiven.connect.elasticsearch.ElasticsearchSinkConnector",
"topics": "iot_measurements",
"connection.url": "ES_CONNECTION_URL",
"connection.username": "ES_USERNAME",
"connection.password": "ES_PASSWORD",
"type.name": "iot_measurements",
"tasks.max":"1",
"key.ignore": "true",
"value.converter": "org.apache.kafka.connect.json.JsonConverter"
}
The configuration file contains the following peculiarities:
"topics": "iot_measurements"
: setting the topic to sink"value.converter": "org.apache.kafka.connect.json.JsonConverter"
: the message value is in plain JSON format without a schema"key.ignore": "true"
: the connector is ignoring the message key (empty), and generating documents with ID equal totopic+partition+offset
Example: Create an Elasticsearch sink connector on a topic in plain JSON format#
If you have a topic named students
containing the following data in JSON format, without a defined schema:
Key: 1 Value: {"student_id":1, "student_name":"Carla"}
Key: 2 Value: {"student_id":2, "student_name":"Ugo"}
Key: 3 Value: {"student_id":3, "student_name":"Mary"}
You can sink the students
topic to Elasticsearch with the following connector configuration, after replacing the placeholders for ES_CONNECTION_URL
, ES_USERNAME
and ES_PASSWORD
:
{
"name":"sink_students_json",
"connector.class": "io.aiven.connect.elasticsearch.ElasticsearchSinkConnector",
"topics": "students",
"connection.url": "ES_CONNECTION_URL",
"connection.username": "ES_USERNAME",
"connection.password": "ES_PASSWORD",
"type.name": "students",
"tasks.max":"1",
"key.converter": "org.apache.kafka.connect.storage.StringConverter",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable": "false",
"schema.ignore": "true"
}
The configuration file contains the following peculiarities:
"topics": "students"
: setting the topic to sink"key.converter": "org.apache.kafka.connect.storage.StringConverter"
: the message key is a string"value.converter": "org.apache.kafka.connect.json.JsonConverter"
: the message value is in plain JSON format without a schema"value.converter.schemas.enable": "false"
: since the data in the value doesn’t have a schema, the connector shouldn’t try to read it and sets it to null"schema.ignore": "true"
: since the value schema is null, the connector doesn’t infer it before pushing the data to Elasticsearch
Note
The Elasticsearch document ID is set as the message key